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ABSTRACT Education is evolving to prepare students for the current sociotechnical changes. An increasing
effort to introduce programming and other STEM-related subjects into the core curriculum of primary and
secondary education is taking place around the world. The use of robots stands out among STEM initiatives,
since robots are proving to be an engaging tool for learning programming and other STEM-related contents.
Block-based programming is the option chosen for most educational robotic platforms. However, many
robotics kits include their own software tools, as well as their own set of programming blocks. LearnBlock,
a new educational programming tool, is proposed here. Its major novelty is its loosely coupled software
architecture which makes it, to the best of our knowledge, the first robot-agnostic educational tool. Robot-
agnosticism is provided not only in block code, but also in generated code, unifying the translation from
blocks to the final programming language. The set of blocks can be easily extended implementing additional
Python functions, without modifying the core code of the tool. Moreover, LearnBlock provides an integrated
educational programming environment that facilitates a progressive transition from a visual to a general-
purpose programming language. To evaluate LearnBlock and demonstrate that it is platform-agnostic, several
tests were conducted. Each of them consists of a program implementing a robot behaviour. The block code
of each test can run on several educational robots without changes.

INDEX TERMS Educational tool, learning programming, robot-agnostic, software architecture.

I. INTRODUCTION
In our highly technological world, Computational Thinking
(CT) is becoming a valuable skill. The term was coined
in [1] and popularised by [2] where it was defined as:
‘‘the thought processes involved in formulating a prob-
lem and expressing its solution(s) in such a way that
a computer -human or machine- can effectively carry
out’’. However, there is still a lack of consensus on
the definition and dimension of the term [3]. In fact,
the authors propose a working definition of Computa-
tional Thinking: ‘‘The conceptual foundation required to
solve problems effectively and efficiently (i.e., algorithmi-
cally, with or without the assistance of computers) with
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solutions that are reusable in different contexts. This defi-
nition highlights that CT is primarily a way of thinking and
acting’’ [3].

Knowing how to communicate with different devices
through own and specific languages (programming languages),
is becoming a crucial aspect for full personal development.
Consequently, the current importance of encouraging CT
could be equatedwith the learning of reading, writing or arith-
metic in the last century [4]. According to [5]: ‘‘Computa-
tional Thinking is essential to the development of computer
applications, but it can also be used to support problem-
solving across all disciplines, including math, science, and
the humanities. Students who learn Computational Thinking
across the syllabus can begin to see a relationship between
subjects as well as between school and life outside the
classroom.’’
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Given the importance of these ideas, efforts to intro-
duce programming into the core curriculum have markedly
increased. Nowadays, many European countries are includ-
ing contents related to programming in curricula at pre-
university stages. Clear examples of this trend can be
found in [6]. Institutional support in this direction has also
been strengthened. An example of this is the EU-funded
TACCLE 3 project [7]. Its objective is to support the inclu-
sion of learning programming in basic education, specifi-
cally in the age range from 4 to 14 years. For this purpose,
TACCLE 3 provides practical ideas, materials and resources
necessary to introduce computing or coding in the class-
room [8]. Non-profit organisations, such as Code.org [9]
or Khan Academy [10], have also emerged to expand com-
puter science learning, as well as to encourage students
of basic education to initiate in computer programming.
Code.org also expects that computer programming will
become a part of the core curriculum in education in the near
future [5].

In addition to CT, programming electronic devices and
robots will also be useful skills in the future. According to
recent studies [11], [12], it is estimated that in 25 years a
significant percentage of the current works could be per-
formed by robots. More specifically, it is expected that in a
decade, robots and/or automatisms will do the work of about
800 million employees [13]. Consequently, the incorporation
of robotics into pre-college education system seems neces-
sary and crucial. This is especially important considering that
the 2030 labour market will mostly require profiles related
to electronic device programming, system automation and
robotics [14].

Fortunately, efforts in this direction have already begun.
The incorporation of robotics in education to introduce
STEM-related subjects is noticeably increasing [15], [16].
Likewise, using robots as teaching instruments is becom-
ing more and more frequent [17]. In addition, a positive
transverse effect is achieved on the student’s performance in
the rest of the subjects. This improvement is the result of
applying the reasoning, logic and abstraction learned from
programming to other subjects [18].

In this context, this paper presents an educational tool,
called LearnBlock, for learning programming and CT-related
contents through robotics. The main property of LearnBlock
is that its design is robot-agnostic, but, additionally, it incor-
porates further important features not provided by other edu-
cational programming tools.

The rest of the paper is organised as follows. Section II
discuses the most significant related work and describes the
main motivation of our project. Section III presents Learn-
Block, providing an overview of the different features of the
tool. Section IV shows the software architecture of Learn-
Block including details on all the modules composing it.
In section V different tests probing the robot-agnostic prop-
erty of LearnBlock are presented. Section VI summarises the
main conclusions and future directions of our work.

II. RELATED WORK AND MOTIVATION
One of the most promising ways to learn programming
is ‘‘block-based programming’’. Widely used educational
tools, such as Alice [19] or Scratch [20], provide graphical
environments for creating programs using blocks. Moreover,
in the last few years, Blockly [21] has emerged as a tool
that allows developers to create their own ‘‘block-based’’
languages. All these educational tools provide interesting fea-
tures for learning coding: they alleviate the syntax-related dif-
ficulties associated with traditional programming languages,
facilitate learning and coding and increase satisfaction [22].

Block-based approaches are also a common option for
learning to program using robots. The most widespread
and well-known programming environments are based
on Scratch, such as Mblock [23] for Makeblock robotic
kits [24], or Blockly, as Makecode [25] from Microsoft for
theMicro:Bit device [26]. Other kits have their own software,
such as Lego Mindstorms EV3 [27] for Lego Mindstorms
EV3 robots [28]. However, the trend of Lego is to integrate
their robots with Scratch 3.0 [29]. This integration is achieved
by offering a set of blocks that are added as extensions to
Scratch 3.0.

Among the different educational tools for learning to code
using robots, Open Roberta’s approach with its NEPO meta
language [30] is one of the most promising. NEPO uses
Blockly for the design of their blocks but integrates a consid-
erable number of robotic educational kits (e.g., WeDo [31],
EV3 series [28], Micro:bit [26], Nao [32], BOB3 [33], mBot
(beta) [34], Calliope mini [35]). To achieve such a wide
platform support, its design is built on top of a Hardware
Abstraction Layer (HAL) [36]. However, for each robot,
NEPO offers a specific set of non-reusable blocks in another
robot.

Despite the variety of educational programming tools,
none of them can be considered robot-agnostic. Thus, inmany
cases, the software tool was specifically designed for a spe-
cific robot. If there is a family of robots, an extension is
included for each robot in the form of a set of new blocks.
These extensions mainly provide access to the robot’s sensors
and actuators. In the case of NEPO (Open Roberta), the meta-
language allows you to choose between several robots. Nev-
ertheless, the same code, however simple, cannot be used in
two different robots. If the selected robot is changed, the code
has to be rewritten limiting code re-usability. In general,
generated code from the blocks is different and specific to
a particular educational robot.

From the perspective of hardware-abstraction, although
PyRobot [37] is not an educational tool, its software design is
worth considering. PyRobot is described as ‘‘a python-based
robotics framework that isolates the ROS system [38] from the
user-end and supports the same API across different robots’’.
Despite its hardware-agnostic design, one of the main limi-
tations of PyRobot is that only one hardware device of the
same type can be configured for a certain robot. In addition,
there exist some dependencies between the hardware and the
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FIGURE 1. The robot EBO.

high-level functionality that could complicate its adaptation
to new robots.

Considering other features, educational software tools gen-
erally allow users to visualise the code generated from the
blocks. This property is inherent to all those based on Blockly
and only depends on design decisions. However, it is not
possible to directly modify this code from the tool and run
it on the robot. In our opinion, this makes the transition to
learning programming in a standard language more difficult.
Furthermore, it is not common to find solutions that offer an
intermediate code or text-based code that facilitates the jump
from visual to textual programming.

In addition, the scope of most software tools for edu-
cational robots is limited, to a certain extent, to the ele-
mentary educational levels. Mainly, this is because complex
behaviours that depend on certain type of hardware, such
as cameras, are difficult to implement. In fact, the reviewed
software tools do not have the ability to include external
libraries, such as OpenCV [39] for image processing and
analysis. In our experience in robotics, the implementation of
robot behaviours with certain levels of complexity requires
the use of third-party software that simplifies the develop-
ment of the specific code. The authors of Pibot [40] agree
with this argument by proposing a low-cost robot for STEM
equipped with an RGB camera. This type of sensor is not
usually included in educational robotics kits, however it is
often found in real-life robotics applications. Image analysis
offers great versatility in the type of challenges posed to
students. In addition, it can help to raise the level of difficulty
of programming to the level expected at university.

Another limitation of the tools studied is that it is not
possible to create new blocks from code written directly in
the high-level programming language. Although projects like
Blockly provide the possibility to extend the set of blocks
from code bywriting code generators, the user cannot directly
write the code in the target programming language. One of
the advantages of this property is that writing small pieces of
functional code in a formal language could provide a progres-
sive way to introduce textual programming to a learner. Thus,
the user could create a very limited functional block that could
be easily tested. Even students could try to write the generated
code from existing blocks, allowing them to self-assess their

solution. But in addition, in our opinion, this property has the
additional advantage for developers and advanced students
of allowing them to develop complex functions (behaviours)
directly in code.

LearnBlock, the proposed educational programming tool,
emerges to integrate all the elements previously discussed and
overcome the limitations of the existing tools. Next section
provides an overview of its main features.

III. OVERVIEW OF OUR PROJECT
LearnBlock arose within the research project Emorobotic
(supported by grant IB16090 from the Government of
Extremadura), which aims to create a set of tools that facil-
itate the teaching-learning processes of programming in pri-
mary and secondary education, with a special focus on how
programming serves as a means for developing abilities of
emotional management. To this end, not only a programming
tool has been built, but also a robot called EBO (Fig. 1),
where students can emulate motor and emotional behaviours.
LearnBlock provides a block-based language through which
children can intuitively program robot behaviours and work
with different robotic platforms. Both, EBO and LearnBlock,
are open developments.

A. GENERAL FEATURES OF LEARNBLOCK
LearnBlock is available in the Python Package Index
(PyPI) [41]. It can be installed using pip (https://pypi.org/
project/learnblock) or fromGitHub source (https://github.com/
robocomp/LearnBlock).

LearnBlock provides a graphical user interface with the
options to create a program using graphical elements (blocks)
(Fig. 2). Thus, the user can build a program by selecting
and connecting different blocks related to program control,
actions and sensory information among others. In addition,
the set of blocks to be used can be configured from the tool
itself to let the user select the more appropriate types of
visible blocks for a particular problem. Blocks can also be
created from other blocks to encapsulate and reuse certain
pieces of code.

All the above features are available in most of the existing
tools, but LearnBlock also supports the creation of individual
blocks from code. As previously mentioned, projects like
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FIGURE 2. GUI of LearnBlock. Available blocks lists (left pane). Code editor (central pane).

Blockly provide the possibility to extend the set of blocks by
writing code generators. In LearnBlock the user can directly
write the code in the target language, specifying the state-
ments that must be executed when the program flow reaches
that point.

Regarding code generation, LearnBlock generates Python
code from the textual representation of a visual pro-
gram (block-based program). The generated code can be
viewed and modified. Thus, the user can choose whether
to create a program from blocks, from the textual rep-
resentation of blocks or directly coding in Python. From
the educational perspective, LearnBlock provides an inte-
grated environment for learning programming where more
complex concepts can be increasingly introduced, mov-
ing progressively towards a professional programming
language.

LearnBlock is robot-agnostic, i.e., the same code can be
used to program different robots. The novelty in this sense
is that the robot-agnostic property is guaranteed not only
for the visual code, but also for the generated one. This
means that the user can create the visual or textual code
with a high level of abstraction from the robot where the
code will be finally executed. Currently, LearnBlock is com-
patible with different physical robots, such as Cozmo [42],
Thymio [43], EBO and Lego EV3 [28], and simulated ones
under RCIS [44] and V-REP [45]. New robots can be added
without modifying the core code of LearnBlock or redefining
blocks. More specifically, to use a new robotic platform,
the only requirement is to provide a Python class implement-
ing the access to the different hardware devices of the robot
as well as providing connection and disconnection methods
to the platform. Details of this process are explained in
section IV.

B. PROGRAMMING MODELS IN LEARNBLOCK
To facilitate the programming of robot behaviours with vari-
ous levels of complexity, two different models of program-
ming can be used in LearnBlock: sequential programming
and event-driven programming.

In sequential programming, the user includes the statement
blocks inside a main block as they must be executed. Func-
tion blocks including other sequences of blocks can also be
created. The execution of such functions is carried out in the
order they are called.

In the event-driven programming model, statement blocks
are included in blocks associated with events, named when
blocks. A when block is activated whenever the associated
event occurs, which implies the execution of the sequence of
blocks it contains. when blocks can also be defined without
an associated external event, and be triggered or stopped from
other points of the code using specific statements to acti-
vate or deactivate them. These blocks allow for the creation of
robot states that ease the implementation of not purely reac-
tive behaviours [46]. In addition, each when block has two
associated statements providing information about the current
state of the block (active or inactive) and its active time. This
information can be used to program changes of state in the
robot according to the activation of other states or the time
elapsed since a given situation has occurred.

IV. SOFTWARE ARCHITECTURE OF LEARNBLOCK
The development of a programming tool that can be used
for programming a wide variety of robotic platforms requires
a thoughtful design. To make LearnBlock an effective
robot-agnostic tool, the platform-dependent code (mainly
hardware-access code) has to be separated from the rest of
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FIGURE 3. General architecture of LearnBlock.

the implementation. In addition, the set of functional blocks
used to create a program using the visual language could
be different for distinct robotic platforms or even could be
extended over time. Thus, code generation should guarantee
a high degree of adaptability to new robot skills while main-
taining a weak dependency on the visual language. Taking all
these considerations into account, LearnBlock design is based
on a model of weakly coupled software modules that sepa-
rates visual programming from code generation and program
execution.

Fig. 3 depicts the software architecture of LearnBlock.
The software elements are distributed into different levels

related to programming, code generation and code execution.
The code execution elements are in turn distributed in three
different groups that separate the required generic code for
program execution from the code related to each specific
robotic platform.

A. BLOCK PROGRAMMING
Block programming is carried out through a graphical user
interface that includes the necessary tools to create, modify
and execute the code (Fig. 2). Blocks are organised in sev-
eral tabs associated with different categories that represent
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FIGURE 4. Block-Text and Python code generated from the visual code of Fig. 2.

the main functionality of the blocks they contain. Four of
these categories are inherent to the visual language: control,
operators, variables and user functions (definition and calls).
These four categories are often understood as compatible
between different robots. It seems clear to all designers of
block-based languages, that for example, the statement If is
the same for any device, however, they do not raise that level
of abstraction to common primitives in robotics, such asmove
forward or rotate a certain number of degrees. LearnBlock
fills this gap by proposing an underlying software architecture
that allows it.

Thus, in LearnBlock, all the remaining block categories not
included in the above four ones are related to blocks provid-
ing platform-independent robot skills. Each of these blocks
is associated with a Python function that implements that
functionality. These Python functions (section IV-C) are inde-
pendent modules that are included in the GUI through block-
configuration files. A block-configuration file is a JSON-
format file describing the block attributes used to visually
represent each function. Listing 1 shows an example of the
block configuration of a function named turn in charge of
turning the base of the robot a certain angle.

B. CODE GENERATION
Each block of the visual language has an equivalent statement
in a domain-specific language called Block-Text. Block-Text
is a simplified programming language that provides a textual
representation of the visual language. Fig. 4(a) shows the
Block-Text code of the visual program of Fig. 2.
Block-Text code is translated to Python (Fig. 4(b)) for

code execution. The translator module is invoked whenever
the user runs a program. Additionally, LearnBlock includes
options to generate Block-Text and Python code without
execution. Once the code has been generated, the user can
access the Block-Text and Python versions through the cor-
responding tabs of the GUI. Fig. 4 shows examples of these
two views.

Listing 1. Block configuration example.

Both views are editable, i.e., the user can modify Block-
Text and Python codes or even create those codes from
scratch. The purpose of these views is to progressively intro-
duce the learner to a professional programming language
i.e., Python. Thus, the user can load and save code in Block-
Text and Python to directly program in any of these two
languages besides using visual programming.

The final language for program execution is Python. The
auto-generated Python program includes the creation of an
instance of a robot client class that is in charge of the
communication with the robotic platform. Python functions
implementing robot skills are included as member functions
of the client object during the creation of a new instance
(section IV-C). Thus, each block associated with these func-
tions is translated in the final Python code as a call to
a method of the robot client. The generated program also
includes control code for a clean interruption of the execution
(section V), ensuring proper stop and disconnection from the
robot.
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As previously mentioned, LearnBlock is robot-agnostic
not only at the level of the block language, but also at the
level of the generated code. This means that the generated
Python program is independent of the robot running the
code. To achieve this level of abstraction, the robot instance
is created from a specific client class that contains com-
mon methods to access the hardware of the robot. The spe-
cific client module is imported including the corresponding
Python statement at the beginning of the generated code. This
is the only line that differs in the final code when different
robots are used for running the same implementation of a
given behaviour.

C. CODE EXECUTION
The elements of the architecture related to code execution
abstract the underlying hardware by means of an organisation
composed of three layers: ‘‘generic robot client’’, ‘‘device
access interfaces’’ and ‘‘specific robot clients’’.

The first layer (generic robot client) includes a generic
client class characterised by the following features:

• Robot-abstraction layer: implements a base class for
specific robot client classes.

• Generic communication with devices: provides generic
access to common devices of robots.

• Extensible and adaptable functionality: adds external
functions as class members during instance creation.

• Access to additional robot skills: starts and communi-
cates with software components that implements addi-
tional perceptual abilities for robots.

Every client class communicating to a specific robot (third
layer) inherits from this generic class (first layer). Thus,
the communication with sensors and actuators, of any robot
can be achieved using methods of the generic class, abstract-
ing this way the tasks of programming and code generation
from the specific robotic platform. Nevertheless, inheritance
by itself could complicate the implementation of specific
clients. Thus, according to the robot sensors and actuators the
methods that should be re-implemented will differ among the
different platforms making the creation of a new client poten-
tially error-prone. In order to avoid this problem, specific
clients adapt the behaviour of the generic client for specific
robots through device access interfaces (second layer).

Device access interfaces are classes that include generic
methods to communicate with common devices in robots.
These methods bridge the generic access and the real commu-
nicationwith a particular device and are implemented as a call
to a function that is passed as a parameter in the initialisation
of a ‘‘device object’’. Such functions implement the access to
the specific device.

Listing 2 shows the definition of a device access interface
for gyroscopes. When a client class creates a device of this
type, it must pass two functions as arguments, one for reading
the current rotation and another one to reset the device. For
example, the specific client class of Listing 3, extracted from
the client class of the robot EV3, creates a device of type

Listing 2. Device access interface of gyroscopes (second layer).

gyroscope (line 11), associating the read and reset functions
with two methods implementing the required functionality,
deviceReadGyroscope (lines 33–35) and deviceResetGyro-
scope (lines 37–39).
To manage and access the devices of a robot, the generic

client class (first layer) includes a dictionary for each type of
device as well asmethods to add new devices to the associated
dictionary. When a new device is defined in a specific client
(see line 11 of Listing 3), it must be included in the set
of accessible devices by calling the corresponding method
in charge of adding the device to one of the dictionaries
(addGyroscope in the case of a device of type gyroscope).
In such a method, the device is associated with a unique key
that identifies it from the rest of the devices of the same
type. For example, in the case of a gyroscope, the key could
be the rotation axis (‘‘Z_AXIS’’ in Listing 3). If no key is
passed as a parameter, the method assigns the default key
‘‘ROBOT’’. The generic client class accepts multiple devices
of any type. Thus, a specific client can define several cam-
eras, gyroscopes, motors, etc. or even several robot bases to
provide control for multiple robots.

In addition to the definition of devices and the implemen-
tation of the particular device access methods, specific clients
include code for connecting and disconnecting the robot. The
connection to the robot (method connectToRobot of Listing 3)
is invoked in the client constructor to ensure it is properly
established before calling any device method. On the other
hand, the code for robot disconnection is provided as a re-
implementation of themethod disconnect() of the parent class
(lines 28 and 29 of Listing 3). This method is called whenever
a robot program is finished or interrupted.

The generic client class contains methods to access all the
types of available devices by calling the appropriate methods
of the device access interfaces. These methods provide the
communication with the different devices to any external
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Listing 3. Specific Robot client example (client class of EV3).

code that uses a robot client. In addition, the generic client is
in charge of periodically reading from all the defined sensors
to avoid undesirable waits when sensory data are required.

The basic functionality for hardware access provided by
a client class is extended in two ways. The first one is
by dynamically adding external Python functions associ-
ated with certain types of blocks (blocks corresponding to
robot skills). These Python functions take an instance of a
robot client as a parameter through which they access the
robot devices to implement a given skill. The set of exist-
ing functions is provided by a package of the LearnBlock
project called functions. This package generates a list of the
available functions searching for the modules defined from
certain paths. Specifically, two initial paths are considered:
the default function path of LearnBlock and an additional

path where functions created by the users are included. In the
creation of a new instance, the generic client class inspects
this list of functions and adds them as class members. The
final set of included functions can be limited by passing as
argument a list with the names of the used functions. This is
automatically done by the code generator.

The second way the functionality of the generic client
is extended is through the connection to software com-
ponents (RoboComp components [47]) implementing addi-
tional robot skills, mainly related to perception. Specifically,
the current version connects to two components providing
additional visual skills: detection and identification of April-
Tags [48] and recognition of emotions in people. These new
skills are accessible by means of a set of methods of the
generic class that communicates with these components to
obtain the required perceptual information. Thus, a code
using a robot client instance, e.g. an added external Python
function, can call this set of methods to implement interactive
skills in any robot equipped with a camera.

Our approach shares some design features with PyRobot,
although there are important differences. One of the princi-
pal ones is that in PyRobot the number of devices of each
type that a robot can include is limited to one, restricting
the support of new robots. In addition, platform interfacing
in PyRobot is solved by the creation of device classes that
inherit from certain classes of the core API. The methods
that should be re-implemented are in some cases not only
related to access to devices, but to more general functionali-
ties, as occurs in the class Base which, for example, includes
methods to go to an absolute or relative position. In other
cases, new methods not defined in the parent class should
be created to provide a complete functionality. For instance,
this happens in the implementation of the class Camera of
the wrapper on LoCoBot [49] to give access to its motorised
camera. All these issues limit code re-usability and hardware
abstraction.

V. ROBOT-AGNOSTICISM TESTS
This section presents some programming examples created
with LearnBlock using various robots. Specifically, three
different programs tested in different pairs of robots are
shown. Results of the execution of the three tests are available
in https://youtu.be/P6LK0w9KCDM. Next, they are briefly
described:

• Square trajectory: robots executing this program fol-
low a square trajectory by an iterative process of 4 iter-
ations. In each iteration, the robot moves straight during
a certain number of seconds and then changes its current
orientation by 90 degrees. This program has been tested
on Cozmo and EV3 (Fig. 5).

• Reaction to tags: in this program, the robot has to search
for tags (AprilTag) and approach them. The approaching
action stops once the robot is situated so near the tag
that it cannot be detected. At that moment, the robot
expresses a certain emotion depending on the detected
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FIGURE 5. Square trajectory test.

FIGURE 6. Reactions to tags test.

Listing 4. Block-Text code of the Square trajectory test.

tag. After several seconds, the robot turns around again
to search for a new tag. The program was tested on the
robots EBO and Cozmo (Fig. 6).

• Line follower: the robot has to detect and follow a black
line on the floor, showing different emotions depending
on whether the line is detected or not. The robots used
for testing this program are EBO and Thymio (Fig. 7).

The Block-Text code of the first test, Square trajectory,
is shown in Listing 4 and the corresponding generated Python
code in Listings 5 and 6. The Python code in Listing 5 is
common to every generated code from a Block-Text source in
LearnBlock. It includes the creation of a robot instance and
the definition of two functions. The first function, elapsed-

Listing 5. Common Python code for all the examples.

Time, is used as a language primitive to check if a cer-
tain time has elapsed from the beginning of the program
execution. The second function, signal_handler, is a signal
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FIGURE 7. Line follower test.

Listing 6. Specific Python code of the Square trajectory test.

handler that is associated with termination signals to properly
stop and disconnect the robot when the program is inter-
rupted. This common Python code also includes the only
platform-dependent line of code (highlighted in the List-
ing 5), in charge of importing a specific robot client class.

As can be seen in Listing 6, the specific Python code of
the first example has many similarities with the Block-Text
code, which favours the transition between the two languages
during the learning process. Thus, the main change is related
to function statements, which are replaced in the generated
code with calls to methods of the robot object.
Results of the execution of this test can be seen in the

first part of the video available in the link provided above.
Besides these results, Fig. 8 shows two call graphs generated
during the execution of the test on Cozmo and EV3. Each call
graph depicts the calling relationships between the different
modules composing the program. The main program (root
node) makes calls to the different behavioral functions taking
part in the square trajectory problem. These functions invoke
methods of the generic client class related to the communica-
tion with the gyroscope and the base of the robot (top nodes
of the central group). The access to these specific devices is
carried out by calling methods of the corresponding device
interfaces (lower nodes of the central group). These calling
flows are independent of the robot executing the program.

Listing 7. Block-Text code of the Reaction to tags test (part 1).

The only differences between the execution flows on the
two robots take place in the final communication with the
hardware devices, which has to be solved by the invocation
of methods of the specific robot clients (lowest level nodes).
Although this invocation is explicit in execution time, from
the programmer point of view, it is implicitly solved by
the definition of devices in the specific client code, as was
described in section IV-C. Differences in the required execu-
tion time for completing the program can also be observed in
the graphs. These differences, which can also be appreciated
in the execution shown in the video, are depicted in the
graphs by the distinct colours of each node (see caption of
Fig. 8). They are mainly due to the particular features of the
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FIGURE 8. Call graphs generated during the execution of the first test (Square trajectory). The different colours of each node are
related to the execution time of each function or method. Gray and blue colours are assigned to functions consuming low to
moderate percentages of the total execution time, while purple and pink colours are associated to those functions requiring higher
time percentages.

sensors used by the two robots and to specific delays in the
communication with both of them. Despite these differences,
both robots behave according to the program specifications
and successfully complete the execution of the test.

The second test, Reaction to tags, shows an example of
event-driven programming using when statements. Block-
Text code of this test is shown in Listings 7 and 8. The
different when statements deals with the distinct behaviours
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FIGURE 9. Block-Text code of the Line follower test for EBO (left) and Thymio (right).

the robot has to exhibit when each considered situation takes
place. Thus, when the program starts, the robot looks in front
of it and activates the state maincontrol, which in turn acti-
vates emotional states (showJoy, showSurprise or showFear)
related to the detected tag, if any. Two other when state-
ments control the motor behaviour of the robot when it
finds a visible tag and when no tag is perceived. These
two states (no_tag and approach_tag) are associated with
external events related to the presence or absence of a visible
tag. Finally, the three when statements of Listing 8 control
the emotional behaviour of the robot, making it express an
emotion once the approach_tag state is deactivated. As a
consequence, the corresponding emotion is shown once the
robot is stopped in front of the detected tag, after approaching
it. The second part of the video shows the results of the
execution of this second test. As can be observed, both robots
exhibit equivalent behaviours.

The first test, Square trajectory (Listing 4), and the second
test, Reaction to tags (Listings 7 and 8), show two programs
that have been executed in two different robots endowed
with the same required types of hardware devices. The third
example showcases code platform-independence, and is used
to describe how LearnBlock’s design overcomes some of
those limitations, offering equivalent behaviours for different
hardware devices when possible. This is illustrated through
two implementations of the Line follower problem for EBO
and Thymio robots. Results of the execution of this test can
be seen in the last part of the video.

The two programs differ because EBO detects the line with
a camera while Thymio uses ground infrared sensors (see
Fig. 9). The differences in both Block-Text codes have been
highlighted in blue in the listings. As can be expected, the line
detection functions are different (lines 4,7,10) due to the use
of different sensors in both robots.

Despite both robots including a differential base, the func-
tionsmove_left andmove_right of the program for EBO have
been replaced with the functions turn_left and turn_right
in the code for Thymio (lines 9 and 12). This change is
not related to the base of both robots, but to the different

Listing 8. Block-Text code of the Reaction to tags test (part 2).

sensors used to detect the line. Thus, the limited range of
the infrared sensors of Thymio makes it necessary to carry
out turns, without translations, to prevent the robot from
moving out of the line. Any additional translation movement
when the robot is turning would cause the infrared sensors
to stop detecting the line. It must be noted that the functions
move_straight and slow_down are maintained in both codes
since they are not affected by the different ranges of the
sensors.

Even though the robot Thymio does not have a display
to show emotional expressions, the client class of Thymio
implements the Display device to show emotions as colours
using its RGB LEDs. This is carried out in the Thymio class
by adding a device of type Display and associating one of its
interface methods to a method of the client class in charge of
setting the LEDs of the robot to a certain colour according
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to the emotion received as parameter. For this reason, just
like EBO does, when Thymio perceives the line, it shows joy
(Thymio’s RGB LEDs light up in green) and, when the line
is not detected, it shows sadness (Thymio’s RGB LEDs light
up in blue).

The call to the function look_floor (highlighted in red)
has been maintained in the code for Thymio to show that its
removal is notmandatory. Thus, if a function requires a device
for its execution and that device is not available, it simply has
no effect.

VI. CONCLUSION
There exists a wide consensus about the importance of
learning programming during the early stages of education.
In recent years many tools have emerged to introduce pro-
gramming concepts to children, making use mostly of block-
based programming languages. The use of robots in learning
coding is increasing. Robots may improve the motivation of
children in the learning process and, in addition, can be very
useful for introducing other STEM-related contents and CT.

Despite the variety of educational programming tools and
robots, there are no integrative solutions that provide a com-
mon environment for learning programming using robots.
LearnBlock fills that gap by proposing a new software archi-
tecture that gives rise to a flexible programming environment
for the integration of different robotic platforms, making it
the first robot-agnostic educational programming tool. The
extensibility of LearnBlock is related not only to the inclusion
of new robots, but also to the possibility of extending the
functional blocks from code without modifying the core code
of the tool. This allows for the creation of complex blocks
providing a wide variety of functionality for programming
different types of robots. In addition, LearnBlock proposes
a progressive learning process that leads to the use of a
general-purpose programming language. This is achieved
by extending the robot-agnostic property to the generated
code.

Most popular educational tools for learning coding are
web-based. This undoubtedly eases the usage of the tools
avoiding any installation process. The main limitation of a
web-based solution takes place in the code execution phase,
since, for different robots, the communication mechanisms
vary and, in some cases, a local connection is required
between the computer and the robot (for instance, using
Bluetooth or NFC). In addition, local installation of specific
software could be required for using some robots. This is the
main reason why LearnBlock was developed as a desktop
application. Since LearnBlock is entirely written in Python,
it is cross-platform. Moreover, it is available as a PyPi pack-
age to facilitate its installation and automatically resolve its
dependencies. However, we are aware of the benefits of web-
based software for educational purposes. Thus, part of our
future work aims to provide a web-based version of Learn-
Block that includesmost of the features of the current version.

Hardware abstraction is relevant not only for educa-
tional purposes, but also for facilitating the development of

high-level algorithms. LearnBlock provides the required soft-
ware infrastructure for the implementation and testing of
algorithms in the field of robotics, abstracting the develop-
ment from low-level issues. This infrastructure is open to
any kind of robotic devices, such as robotic arms, as well
as to any type of robot, either educational or not. To make
easier adapting new robot platforms to LearnBlock, we are
developing a tool that generates templates for specific client
classes based on high-level platform descriptions. In addition,
software support for new kinds of sensors and actuators is
being added in order to extend the variety of robots that can
be programmed with LearnBlock.
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